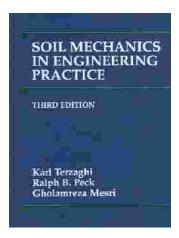
Historia de la Geotecnia

- A partir del s. XVIII los problemas relacionados con las cimentaciones y otros aspectos geotécnicos son estudiados de una forma más metódica.
- Entre principios del S. XVIII y mediados del s. XX, la historia de la Ingeniería Geotécnica suele dividirse en cuatro épocas:
 - Periodo pre-clásico (1700-1776)
 - 1ª etapa de la Mecánica de Suelos clásica (1776-1856)
 - 2ª etapa de la Mecánica de Suelos clásica (1856-1910)
 - Mecánica de Suelos moderna (1910- años '30/'40)


Historia de la Geotecnia

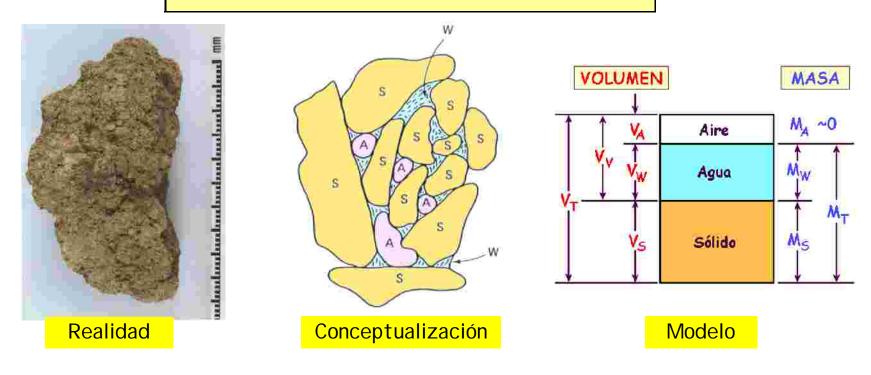
■1925 y después.

- **Karl von Terzaghi (1883-1963)**
 - Se le considera el "padre" de la Mecánica de Suelos
 - Publica en 1925 *Erdbaumechanik auf Bodenphysikalisher Grundlage*. Enuncia la <u>Ley de las Tensiones Efectivas</u>
 - En 1943 publica el texto *Theoretical Soil Mechanics*
 - En 1948, en colaboración con Ralph B. Peck publica *S oil Mechanics in Engineering Practice*

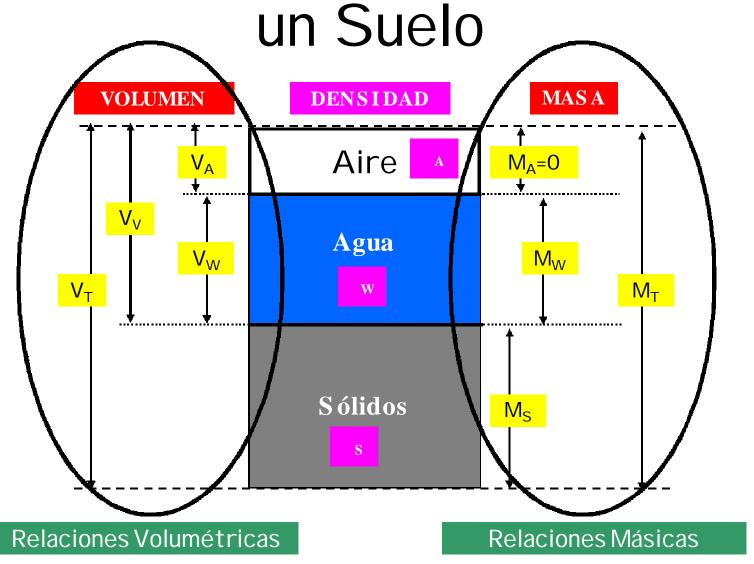
Conceptos Previos

- Los términos I ngeniería Geotécnica están relacionados con la aplicación de la tecnología y métodos de la I ngeniería Civil a los materiales geológicos.
- Los ingenieros sueles referirse a esos materiales de forma genérica como suelo o roca.
- Un SUELO, en el sentido ingenieril, es un aglomerado relativamente poco cohesivo compuesto por minerales, materia orgánica y/o sedimentos que se encuentra por encima de un substrato rocoso.
- Los suelos pueden ser fácilmente fragmentados hasta separar sus partículas más pequeñas.
- El significado de un suelo para un ingeniero civil no es igual que el que tiene para un agrónomo, edafólogo, biólogo, geólogo...

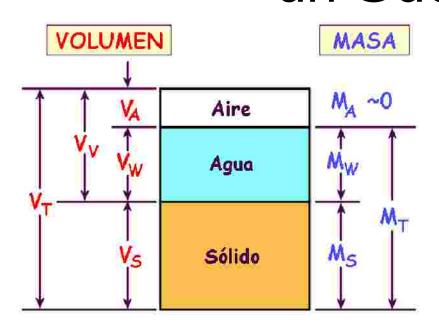
Conceptos Previos


- A pesar de las diferencias conceptuales, existe un cuerpo de conocimiento común entre la ingeniería geotécnica, la geología y la edafología
- Una ROCA es un material geológico con mucha mayor cohesión que un suelo
- La división entre suelo y roca es completamente arbitraria y muchos materiales geológicos comunes pueden ser clasificados de las dos maneras (rocas blandas o suelos duros)
- La Mecánica de Suelos es una rama de la Ingeniería Geotécnica que se ocupa del estudio del comportamiento y propiedades geotécnicas de los suelos
- La Mecánica de Rocas es una rama de la Ingeniería Geotécnica que se ocupa del estudio y del comportamiento y las propiedades geotécnicas de las rocas

Estudio y Descripción de las Fases del Suelo


S: Sólido à Partícula de Suelo

W: Líquido à Agua + electrolitos


A: Aire à Aire

Distribución de las Fases de

Distribución de las Fases de un Suelo

Balance de volumen

$$V_T = V_S + V_V = V_S + V_W + V_A$$

Balance de masa

$$M_T = M_S + M_W$$

 V_T : volumen total

V_A: volumen de aire

V_w: volumen de agua

V_s: volumen de sólido

V_v: volumen de los huecos

 M_T : masa total

 $\mathbf{M}_{\mathbf{A}}$: masa de aire

 M_w : masa de agua

M_s: masa de sólido

P=m· g

P_T: peso total

P_w: peso del agua

Ps: peso del sólido

Relaciones Volumétricas

Indice de huecos, e (valor decimal, P. Ej. 0.65)

$$e = \frac{\text{Volumen de huecos}(V_{V})}{\text{Volumen de sólidos}(V_{S})}$$

Porosidad, n (en porcentaje, P. Ej. 100%, 65%)

$$n = \frac{\text{Volumen de huecos}(V_{\text{V}})}{\text{Volumen total de suelo}(V_{\text{T}})}$$

Relaciones Volumétricas

Grado de Saturación, S (en porcentaje, P.Ej. 65%)

$$S = \frac{\text{Volumen total de huecos conteniendo agua}(V_W)}{\text{Volumen total de huecos}(V_V)} \times 100$$

- Para un suelo completamente seco, S = 0 %
- Para un suelo completamente saturado, S = 100%
- Para un suelo parcialmente saturado, 0% < S < 100%

Relaciones Volumétricas

Contenido (volumétrico) de agua, Q (en porcentaje, P.Ej. 65%)

$$\Theta = \frac{Volumen \ de \ agua(V_W)}{Volumen \ total \ (V_T)} \times 100$$

$$S = \frac{V_{\scriptscriptstyle W}}{V_{\scriptscriptstyle V}}$$

$$S = \frac{V_W}{V_V}$$

$$SV_T = \Theta V_V \implies S = \frac{\Theta}{n} \implies S = \frac{\Theta(1+e)}{e}$$

Relaciones Másicas

- Contenido (másico) de humedad, w (en porcentaje,
 - P. Ej. 30 %)

$$w = \frac{Masa \ de \ agua(M_W)}{Masa \ de \ s\'olido(M_S)} \times 100$$

- El contenido de humedad se refiere al peso seco de suelo
- En la mayor parte de suelos, w < 100%. Sin embargo, en algunos suelos marinos u orgánicos, w puede ser mayor o igual a 500 %

Densidad y Peso Específico

- La <u>masa</u> es una medida de la inercia de un cuerpo, es decir, su "cantidad" de materia. Su valor es independiente de la posición.
- El <u>peso</u> es la fuerza resultante de la acción de la gravedad sobre un cuerpo. Su magnitud depende de la posición.
- De acuerdo con la 2ª Ley de Newton, F = m x a
- En cálculos geotécnicos es más frecuente emplear el peso específico que la densidad

$$Densidad, r = \frac{Masa}{Volumen}$$

$$Peso\ específico, g = \frac{Peso}{Volumen} = \frac{Masa \cdot g}{Volumen}$$

$$g = r \cdot g = r \cdot 9.81 \ m/s^2$$

Densidad y Peso Específico

Densidad

$$r = \frac{M_T}{V_T} = \frac{M_S + M_W}{V_T}$$

$$r_{sat} = \frac{M_S + M_W}{V_T}$$

$$r_S = \frac{M_S}{V_S}$$

$$r_{w} = \frac{M_{w}}{V_{w}}$$

$$r_d = \frac{M_S}{V_T}$$

total, húmeda, aparente, natural $V_A^{\ 1}\ 0$; S<100%

saturada/o $V_A=0$; S=100%

del sólido

del agua

seca/o

Peso Específico

$$g = \frac{P_T}{V_T} = \frac{P_S + P_W}{V_T}$$

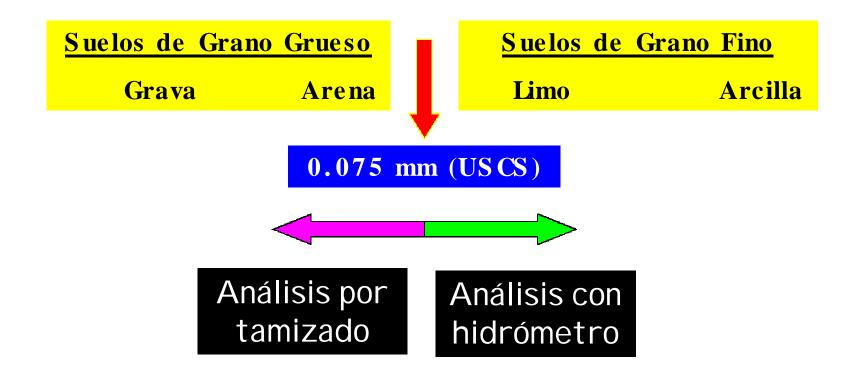
$$g_{sat} = \frac{P_S + P_W}{V_T}$$

$$g_S = \frac{P_S}{V_S}$$

$$r_{w} = \frac{P_{w}}{V_{w}}$$

$$g_d = \frac{P_S}{V_T}$$

Gravedad Específica


$$G_S = \frac{r_S}{r_W} = \frac{r_S \cdot g}{r_W \cdot g} = \frac{g_S}{g_W}$$

Mineral	G_{S}	Mineral	G_{S}
Cuarzo	2.65	Clorita	2.6-2.9
K aolinit a	2.6	Biot it a	2.8-3.2
I llit a	2.8	Moscovita	2.76-3.1
Mont morillonit a	2.65-2.80	Hornblenda	3.0-3.47
Halloys it a	2.0-2.55	Limonit a	3.6-4.0
Feldespato potásico	2.57	Olivino	3.27-3.7
Plagioclasa	2.62-2.76		

Propiedades Físicas de los Suelos

Textura de los Suelos

La textura se relaciona con su aspecto o "tacto" y depende del tamaño relativo y las formas de las partículas que lo constituyen. También es función de los rangos de distribución de los distintos tamaños.

Textura de los Suelos

Características

		•	
Tipo de Suelo	Gravas, Arenas	Limos	Arcillas
Gra nulome t ría	Grano grueso. Los granos individuales pueden ser distinguidos a ojo	Grano fino. No se pueden distinguir los granos a simple vista	Grano fino. No se pueden distinguir los granos a simple vista
Características	No plásticos. Granulares	No plásticos. Granulares	Plásticos
Efecto del agua en su comportamiento ingenieril	Relativamente poco importante con la excepción de suelos granulares saturados no cohesivos y cuando están sometidos a cargas dinámicas	I mport ant e	Muy importante
Efecto de la distribución granulometrica en el comportamiento ingenieril	I mport a nt e	Relativamente poco importante	Re lat ivament e poco import ant e

Holtz y Kovacs (1981)

Forma de las Partículas

- La forma de las partículas juega un papel importante en las propiedades mecánicas del suelo
- No suele determinarse dada la complej idad que los análisis requieren
- Sin embargo, entender algunas propiedades mecánicas (p. Ej. resistencia al corte) es más fácil si entendemos las formas que tienen. Para partículas equidimensionales...

$$Angularidad = \frac{Radio\ medio\ de\ aristas\ y\ v\'ertices}{Radio\ de\ la\ mayor\ esfera\ inscrita}$$

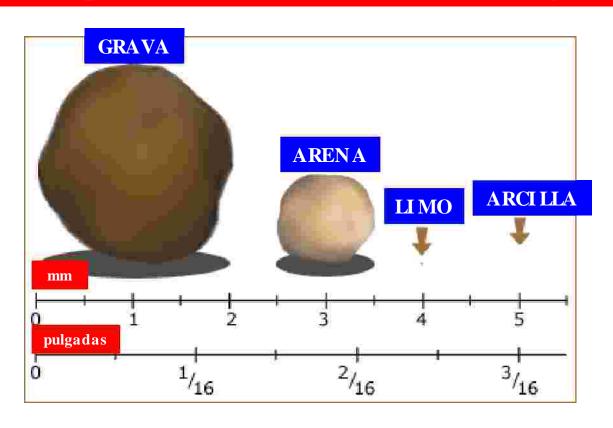
Esfericidad,
$$S = \frac{D_e}{L_p}$$

$$D_e = \sqrt[3]{\frac{6V}{p}}$$

V: volumen de la partículaD_e: diámetro equivalenteL_D: longitud de la partícula

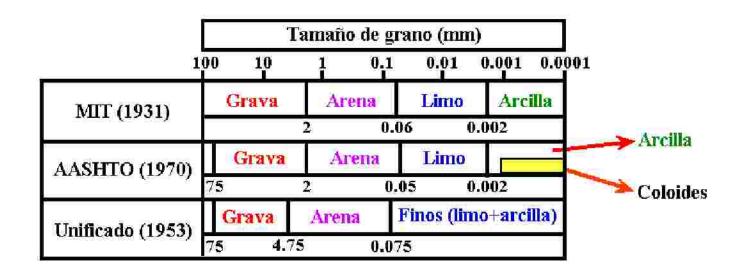
Forma de los Granos

Partículas con alta esfericidad	\Diamond	0	0	<u></u>		
Partículas con baja esfericidad					0	
	Muy angulosa	Angulosa	Subangulosa	Subredondeada	Redondeada	Bie n re donde a da

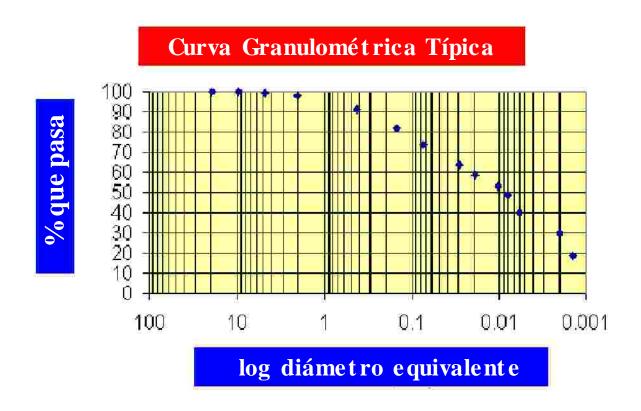

- Es un parámetro importante en suelos granulares
- Partículas angulares → mayor coeficiente de rozamiento
- Partículas redondeadas → menor rozamiento
- Recordar que las partículas de arcilla son tabulares

Superficie Específica

- Es la relación existente entre el área que ocupa una partícula y su volumen.
- Cuanto menor es el tamaño de una partícula, mayor es la superficie específica.
- Dividiendo la superficie específica por la densidad obtenemos la superficie de la partícula por unidad de masa.
- En general, debemos esperar mayores contenidos de humedad en suelos con gran superficie específica que en otros en los que este parámetro sea pequeño

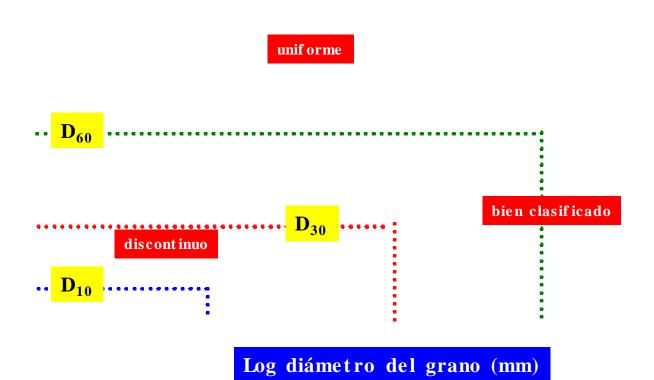

Granulometría

Idea aproximada de distintos tamaños de grano


Granulometría

Clasificación granulométrica de los sedimentos, según diversas clasificaciones frecuentemente empleadas en geotecnia

Curva Granulométrica


UNE 7060-1/1997: Representación de resultados obtenidos por análisis granulométrico. Parte 1: Representación gráfica

Curva Granulométrica

Tamices estándar U.S.

% retenido (más grueso que), en peso o masa

Holtz y Kovacs (1981)

Distribución Granulométrica

- Diámetro Efectivo (D₁₀)
- Coeficiente de Uniformidad (C_U)
- Coeficiente de Curvatura (C_C)

$$C_{U} = \frac{D_{60}}{D_{10}}$$

$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})}$$

Un suelo se considera bien clasificado si ...

$$1 < C_C < 3 \ y \ C_U \ge 4$$

$$(para gravas)$$

$$1 < C_C < 3 \ y \ C_U \ge 6$$

$$(para arenas)$$

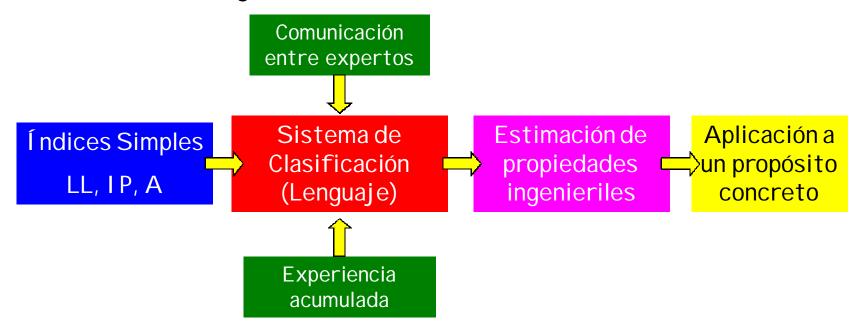
Límites de Atterberg

La presencia de agua en suelos de grano fino afecta significativamente su comportamiento geotécnico. Para describir esos efectos es precisa una escala de referencia

ASTM D4318/93

Índices de Consistencia

Índice de Plasticidad, IP


Permite describir el rango de contenidos de agua bajo los cuales un suelo tiene comportamiento plástico

Clasificación de los Suelos

Propósito

- La clasificación de los suelos en grupos de comportamiento análogo a partir de índices simples, proporciona a los ingenieros una guía general para entender las propiedades ingenieriles de los suelos.
- La clasificación de los suelos es el resultado de la experiencia acumulada a lo largo de muchos años.

Sistemas de Clasificación

- Los más utilizados en geotecnia son dos:
 - Sistema Unificado de Clasificación de Suelos (Unified Soil Classification System, USCS).
 - Sistema de la Asociación Americana de Transporte y Autopistas Estatales (American Association of State Highway and Transportation Officials, AASHTO)
 - Ambos se basan en dos propiedades-índice:
 - Granulometría
 - Límites de Atterberg

Ejemplo de Aplicación

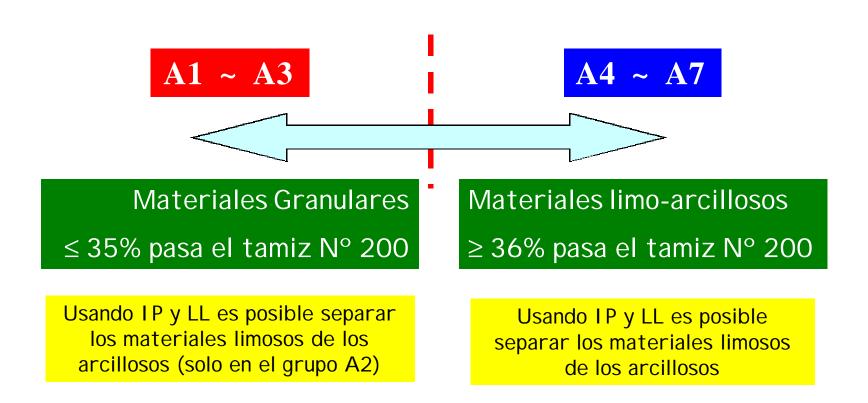
Tipo de Suelo	Tamaño de Grano	% de Finos	Criterio de Separación	Tipo de Suelo
	Grava (> 50 % de la fracción gruesa retenida por el tamiz N° 4)	< 5 %	$C_{U} > 4$ 1<= $C_{C} <= 3$	GW
			No cumple con GW	GP
GRANO GRUES O (> 50 % retenido por el tamiz N° 200)		> 12 %	Por debajo de la línea A	GM
			Por encima de la línea A	GC
	Arena (< 50 % de la fracción gruesa retenida por el tamiz N° 4)	< 5 %	$C_{\rm U} > 6$ 1<= $C_{\rm C} <= 3$	SW
			No cumple con SW	SP
		> 12 %	Por <u>debajo de la líne</u> a A	SM
		> 12 %	Por encima de la línea A	SC
GRANO FINO (< 50 % retenido por el tamiz N° 200)	LL > 50	Ĭ.	there is the a	MIL CL
) service	OL	
		20 (A) (A) (CH) (A) (CH) (A) (A) (CH) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A		МН
	Ll < 50			СН
				ОН
SUELOS ORGÁNICOS		110		Pt

% grano grueso = 70

Pasa N° 4 = 70 %

% finos = 30

LL= 33


IP= 12

 $\overline{IP} = 0.73(LL-20) = 9.49$

Tipos de Suelo - USCS

- **GW** (Gravas bien clasificadas, mezclas de grava/arena, sin o con pocos finos)
- **GP** (Gravas mal clasificadas, mezclas de grava/arena, sin o con pocos finos)
- GM (Gravas carbonatadas grises,mezclas de limo/arena)
- GC (Mezcla de gravas carbonatadas grises/arena/arcilla)
- SW (Arenas bien clasificadas, arenas con grava, sin o con pocos finos)
- **SP** (Arenas mal clasificadas, arenas con grava, sin o con pocos finos)
- SM (Arenas limosas, mezclas limo/arena)
- SC (Arenas arcillosas, mezclas arena/arcilla)
- ML (Limos inorgánicos y arenas muy finas, arena fina limo-arcillosa)
- CL (Arcillas inorg. de plast. baja a media, arcillas arenosas, limosas o sueltas)
- OL (Limos orgánicos y arcillas limosas orgánicas de baja plasticidad)
- MH (Limos inorgánicos, arenas micáceos o de diatomeas finas, limos elásticos)
- CH (Arcillas grasas)
- **OH** (Arcillas orgánicas grasas)
- PT (Turba, humus, y otros suelos orgánicos pantanosos)
- **SP-SM** (Mezclas de limo/arena/grava)
- L (Calizas)
- S (Areniscas)

Criterio General - AASHTO

Ejemplo de Aplicación

Grupo S ue		Granulomet ría % que pasa tamiz Nº 200	LL*	I P*	Tipo de Material	Calidad de la subbase
A 4	ļ	Mín. 36	Máx. 40	Máx. 10	Suelo limoso	
A5	5	Mín. 36	Mín. 41	Máx. 10		Aceptable a mala
Ac		Mín. 36	Máx. 40	Mín 11	G. I	
A7	- 7 - 5	Mín. 36	Mín. 41	Mín 11 IP<= LL- 30	S ue lo arcilloso	
	- 7- 6	Mín. 36	Mín. 41	Min 11 IP>LL-30		

LL=70

LL- 30=40 > IP=32

Pasa N° 200 =86 %

$$GI = (F_{200} - 35)[0.2 + 0.005(LL - 40)] + 0.01(F_{200} - 15)(IP - 10) = 33.47 \approx 33$$

Descripción de los Suelos

- Generalidades (color, textura, origen, mineralogía, olor, etc.)
- Tamaño de las partículas
- Plasticidad
- Contenido en materia orgánica
- Discontinuidades y estratificación
- Dilatancia
- Resistencia en Seco
- Consistencia
- Contenido en carbonatos

Estructura de los Suelos

- Homogéneo: Propiedades uniformes.
- Heterogéneo: Propiedades disimilares.
- En panal de abeja (Honeycombed): Con muchos huecos o coqueras.
- Fisurado: Con grietas de retracción, a menudo rellenas con arena fina o limo.
- Estratificado: Suelos dispuestos según capas subhorizontales.
- Laminado: Suelo estratificado con capas delgadas.
- Bandeado: Suelo estratificado evidenciando cambios de coloración.
- Foliado: Presenta fisibilidad.
- Estriado: Cortado por planos de rotura que le dan un aspecto brillante, acanalado o estriado.
- Lenticular: Capas o estratos estrechos y discontinuos.
- Costras: Rellenos de fracturas o recubrimiento de las partículas.
- Margoso: Suelos carbonatados de tamaño de grano muy fino.
- Caliche: Con una zona u horizonte de carbonato cálcico secundario.